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STABILITY OF MULTISTEP METHODS I N  NUMERICAL INTEGRATION 

By Robert N. h a  
Manned Spacecraft Center 

SUMMARY 

One widely used technique f o r  t he  numerical so lu t ion  of a d i f f e r e n t i a l  
equation i s  t o  approximate the  d i f f e r e n t i a l  equation by a difference equation, 
and then t o  solve t h i s  difference equation. This paper treats the  s t a b i l i t y  
of the  solut ions obtained by t h i s  method. An o r i g i n a l  development leading t o  
a de f in i t i on  of s t a b i l i t y  shows a r e l a t ion  between s t a b i l i t y  and ce r t a in  prop- 
e r t i e s  of the  systems of d i f f e r e n t i a l  equations t o  be solved. Previous inves t i -  
gations (with the  exception of Dahlquist 's  work) have shown a s i m i l a r  r e l a t ion ,  
but were l imited t o  t he  consideration of a s ing le  equation. Dahlquist 's  theory, 
while va l id  f o r  systems of equations,  shows no such r e l a t ion .  

INTRODUCTION 

A large p a r t  of the  computer time a t  NASA Manned Spacecraft  Center, 
Houston, Texas, i s  devoted t o  the  numerical so lu t ion  of d i f f e r e n t i a l  equations. 
I n  order t o  reduce t h i s  computing t i m e ,  it is  necessary t h a t  accurate ,  more 
rapid methods of numerical in tegra t ion  be developed. One important c r i t e r i o n  
of accuracy i n  se lec t ing  a method i s  t h a t  it be s tab le .  The s t a b i l i t y  of a 
method i s  t h a t  property which causes an e r r o r  introduced a t  some s t ep  t o  tend 
t o  decay i n  succeeding s t eps ,  ra ther  than t o  grow and eventual ly  destroy the 
usefulness of the approximate solut ion.  It i s ,  therefore ,  extremely important 
t h a t  users of numerical in tegra t ion  procedures be f ami l i a r  with the  concept of 
s t a b i l i t y .  The purpose of t h i s  paper i s  t o  discuss  s t a b i l i t y  of numerical 
methods, and t o  extend the  de f in i t i on  of s t a b i l i t y  t o  systems of equations. 

SYMBOLS 

a c ons t ant  

F(x, Y ) ,  Y(x) m-dimensional vector f'unctions 

Fn = "(x,, yn) 



I 

f ( x ,  y> component of F 

f n = f(xn, yn) 

h in t eg ra t ion  s tep-s ize  

x = a + &  n 

'n 
an approximation t o  

Y ( X >  component of Y 

'n Y(Xn) 
an approximation t o  

STABILITY AND CONVERGENCE 

Consider t he  d i f fe rence  equation 

+ * ' * + aoYn = h(bkFn+k + bk-lFn+k,l. + ... + boFn) (1) ?kyn+k + %-lyn+k-l 

t o  solve the  ordinary d i f f e r e n t i a l  equation 

Y '  = F(x, Y )  

Y ( a )  = Y 0 

L e t  Yfx) be t h e  so lu t ion  t o  equation ( 2 ) ,  and def ine  the  operator 

1 k 
L[.(x)] = go piY(x + i h )  - hbiY'(x + ih) 

By expanding L i n  a power s e r i e s  about x, it can be shown t h a t  



i f ,  and only i f ,  t he  following pfl l i n e a r  r e l a t i o n s  hold: 

Statement (b )  

k 

i =O 
Statement ( c  ) ( a . i  1 -bi) = 0 

( s  = 2 ,  ... , p )  

(s = 1) 

Defin i t ion  A. L e t  p be the  l a r g e s t  value of s f o r  which 
statements ( a )  t o  ( c )  of t h e  above a s se r t ion  hold. Then p w i l l  be ca l l ed  
the  degree of the  operator L or t h e  degree of t h e  d i f fe rence  equation (1). 

Def in i t ion  B. The number of preceding poin ts  occurring, e x p l i c i t l y  or 
imp l i c i t l y ,  i n  equation (1) w i l l  be ca l l ed  the  order of t h e  operator L or 
t he  order of t he  d i f fe rence  equation (1). 

(The above de f in i t i ons  a re  those used by Dahlquist ( r e f .  1). Some 
authors define the  quant i ty  of d e f i n i t i o n  A as the  order of the  method and 
r e f e r  t o  the  quant i ty  i n  d e f i n i t i o n  B as the  s t e p  number of the  method.) 

A s  a simple example, consider t he  point-slope d i f fe rence  equation 

Yn+l - Y = hFn n 

t o  'n This method has order 1 s ince  it uses only one preceding poin t  

compute . The equation 'n+ 1 

L[!f(x)] = Y(x + h )  - Y(x) - hY' (x)  

i s  the  operator associated with the  d i f fe rence  equation. Statement ( a )  of d e f i -  
n i t i o n  A holds,  s ince  a = 1 and a = -1. The l a r g e s t  value of s f o r  which 
statement ( b )  i s  t r u e  i s  determined i n  the following manner: 

1 0 

If s = 1, then 
1 2 a . i  - b. = -1+ 1 = 0 

i = O  1 1 

and, i f  s = 2, then 

Therefore, t h e  point-slope formula has degree 1. 

3 



The polynominals 

k-1 + 

can be associated with t h e  d i f fe rence  equation (l), and hence, with every 
p a i r  of polynomials of the type of equation ( 3 ) ,  can be associated a di f fe rence  
equation of the  form of equation (l), provided the  degree of 
equal t o  the degree of a. The following assumptions can be made concerning 
t h e  polynomials of equation ( 3 ) :  

p is a t  l e a s t  

Assumption (a ) .  The coef f ic ien ts  a b .  (i = 0, ... , k )  a re  r e a l ,  # 0. 
i' 1 

Assumption (b) .  The polynomials p (  6 )  and a( 6 )  have no common fac tor .  

Assumption ( c ) .  !Be degree p of the  operator L i s  a t  l e a s t  1. 
(Condition of consistency) 

Defini t ion C. The d i f fe rence  equation (1) i s  sa id  t o  be s t ab le  if the  
following assumptions a r e  s a t i s f i e d  i n  addi t ion t o  assumptions ( a )  t o  (c) :  

Assumption (a). The roots  of p ( e )  are located within o r  on the  u n i t  
c i r c l e .  

Assumption (e).  The roots  on the  u n i t  c i r c l e  a r e  d i s t i n c t .  

Theorem I. A necessary and s u f f i c i e n t  condition f o r  convergence of the  
l i n e a r  mult is tep method of equation (1) is t h a t  the  condition of s t a b i l i t y  i s  
s a t i s f i e d .  

The proof of Theorem I and a l so  the  proofs of the  following three theo- 
rems are  given i n  references 1 and 2. 

Theorem 11. The degree p of a s table '  operator of order K can never 
exceed K + 2. If K i s  odd, the  degree cannot exceed K + 1. 

Theorem 111. If an operator of even order K i s  s t ab le ,  then the  
conditions 

and 

a re  necessary and s u f f i c i e n t  i n  order t h a t  it should be of maximum degree 
K + 2. A l l  roots  of p ( e )  then have u n i t  modulus. 

(4) 

Defini t ion D. The formula of equation (1) i s  sa id  t o  be open i f  bk = 0, 
and closed if bk # 0. 
4 



Theorem IV. If the  degree p is  grea te r  than the  order K and the  
method is s tab le ,  then the  difference equation must be closed. 

Actually bk/ak 7 0. It is possible  t o  construct an open, s t a b l e  operator 

of degree p = K, s t a r t i n g  from any polynomial p ( e ) ,  and sa t i s fy ing  
assumptions (a) t o  ( e ) .  

As  an example of an unstable method, consider the difference equation 

t o  solve the  i n i t i a l  value problem Y '  = 0, Y(0) = 0. 

The associated polynomial p ( 6 )  has a multiple root  a t  e = 1 and 
therefore  v io l a t e s  the  condition of s t a b i l i t y .  

a r e  given exactly.  Further,  assume t h a t  an e r r o r  is made i n  computing 

and the  r e s u l t  i s  Yo = E # 0. 

severa l  values give the following r e su l t s :  

Assume t h a t  Y-l = Y-2 = 0 

Using the  formula of equation ( 5 )  and computing 

Yl = 26 

Y2 = 3c  

Y = 46 
3 

Y = ( n  + 1 ) e  n 

It i s  then seen t h a t  i n  an unstable method, any e r r o r  introduced can 
continue t o  grow i n  succeeding calculat ions u n t i l  the  approximate so lu t ion  
becomes worthless. A s t ab le  method does not allow growth of t h i s  type. For 
example, consider the  point-slope formula 

- Y  = h F  'n+l n n 

and the  more complicated formula 

1 - -Y - = F2(h,x,Y) 'n+1 2 n 2 n-1 (7) 

m e  associated polynomials of equations (6) and (7) a r e  respect ively,  

p - l = O  (8  1 

and p 2 1  ' p - 2 ' 0  1 
( 9 )  

5 



The root  of equation (8) i s  p = 1 and t h e  roots  of equation (9) are 

Using equation (6) t o  solve t h e  same probxem as i n  t h e  1 
p = 1 and p = T. 
preceding example, it can be seen t h a t  t h e  e r r o r  i n  each s tep ,  a f t e r  the  e r r o r  
w a s  introduced i n  t h e  computation of 

i n  Y 

Yo, has t h e  same magnitude as the e r r o r  

Using equation (7) ,  a f e w  values w e  computed: 
0' 

E y = -  
1 2  

Y =  2 ?  

Y =7 5 €  
3 

Notice t h a t ,  assuming no f u r t h e r  e r r o r  i s  made, t he  e r r o r  i n  s t e p  n is  
l e s s  than the  e r r o r  made i n  computing . Yo 

A s  Theorem I s t a t e s ,  t he  condition of d e f i n i t i o n  C i s  necessary and 
s u f f i c i e n t  f o r  convergence. 

WEAK INSTABILITY 

The second type of i n s t a b i l i t y  may allow unfavorable e r r o r  growth i n  the  
immediate v i c i n i t y  of zero step-size.  Methods i n  which t h i s  can happen a r e  
ca l led  weakly o r  condi t iona l ly  s t ab le .  
in tegra t ion  of the  s ing le  f i r s t - o r d e r  equation 

This s ec t ion  i s  concerned with the  

using the  d i f fe rence  equation (1). 

Define E by the  equation k 

'k = '(%) - 'k 

and E; by the  equation 

= f[%,Y(%)J - fk 

6 



I 

It can be assumed t h a t  h i s  s u f f i c i e n t l y  s m a l l  t h a t ,  given a poin t  
af i s  constant i n  t he  i n t e r v a l  with end poin ts  5, 27 

by the  mean value theorem 

13y s u b s t i t u t i n g  the  t r u e  values i n t o  equation (l), and then the computed 
values,  and subt rac t ing  the  two, the  following d i f fe rence  equation i s  obtained 
f o r  the e r r o r  E which w a s  committed because the  computed yalues were used 
r a the r  than the  t r u e  values. 

- af On using equation (11) and def in ing  h = 5 h ,  equation (12) can be w r i t t e n  a s  

n n 
+ ‘kPk + c2p* + ... En = CIP 

n 

where the  p . , i  = 1, ... , k a r e  the roots  of the  associated polynominal 
1 

It should be noted t h a t  i f  the  roots  of equation 
of the previous equation f o r  E (eq. (14)) will be s l i g h t l y  d i f f e ren t .  A s  an 

example, i f  

(15) a re  n o t  simple, the  form 

n 
i s  a root of mul t ip l i c i ty  2, Pl 

E = ( e 1 +  c n n 
+- ‘kPk n 

Relative s t a b i l i t y  can now be defined as follows: 
- 

Defin i t ion  E. I n  the  region h <  = 0 , t h e  d i f fe rence  equation (1) i s  sa id  
t o  be s t a b l e  i f  t he  roots  of the  polynomial of equation (15) a r e  contained 

within the  u n i t  c i r c l e .  Note t h a t  when h i s  pos i t i ve ,  or 

the  e r r o r  a l ready grows exponent ia l ly  from the  nature of the  e r r o r  equa- 
t i o n  (11). 

is  pos i t i ve ,  af 
ay 

- 

This growth i s  not regarded as i n s t a b i l i t y  i n  the  method. 

The following theorem from reference 3 gives a s t a b i l i t y  c r i t e r i o n  f o r  
a d i f fe rence  equation. 

7 



Theorem V. The d i f fe rence  equation (1) i s  s t a b l e  i f ,  and only i f ,  t h e  
matrix 

( r , s  = 0,1, ... ., k - 1) 
i s  pos i t i ve  d e f i n i t e ,  where 

- 
( j  = 0,1, ... , k) j 

Reference 4 sl~ows t h a t  t h e  square matrix A of the above theorem 
r ,s  

i s  symmetric about both diagonals ,  t h a t  i s ,  

and 

A =  r,s Ak-s-1, k-r-1 

Thus, t h e  number of computations involved i n  the  app l i ca t ion  of Theorem V t o  
a difference equation i s  reduced considerably. 

References 5 and 6 use t h e  f a c t  t h a t  t h e  roots  of a polynomial a r e  con- 
tinuous functions of t he  coe f f i c i en t s  of t he  polynomial t o  study s t a b i l i t y  of 
in tegra t ion  formulas. This property of roots  of polynomials i s  proven i n  

reference 7. It i s  poss ib le  t o  vary h i n  equation (15) and p l o t  t h e  roots  

as a funct ion of h 

- 

t o  determine the  region of s t a b i l i t y  of equation (1). 

It i s  thought t h a t  t he  method of Theorem V is  more prec ise  than the  a fore-  
mention method; however, computing the  c h a r a c t e r i s t i c  roots  of A might 

not be simple. The previous method, while not qu i t e  as prec ise ,  should give 

a s a t i s f a c t o r y  bound on h. 

T , S .  

- 

It i s  shown i n  reference 8 t h a t  i f  a predictor-corrector  method is used 
where the  cor rec tor  formula is  used only once per in t eg ra t ion  s t ep ,  the  sta- 
b i l i t y  of the  method i s  dependent on the  p red ic to r  formula as w e l l  a s  on the  
corrector .  Therefore, i n  a r r i v i n g  a t  equation (15), an e r r o r  equation m u s t  
be derived f o r  the  predicted value,  and t h i s  value must be subs t i t u t ed  i n t o  
the  e r r o r  equation f o r  the corrected value. 

Final ly ,  it should be noted t h a t  t h i s  l a t t e r  concept of s t a b i l i t y  has not 
been extended t o  a system of d i f f e r e n t i a l  equations.  

8 



E X " S 1 O N  OF THE D E R N I T I O N  O F  STABILITY 

L e t  z .  = Y x  and Zi = F b j ,  Y(xj)] - F 
Yi i n t o  equation (l), and subt rac t ing  'in the same manner as i n  the  pre- 

Subs t i tu t ing  
J ( j)  - j '  

and 
J 

ceding s e c t i o n ,  y ie ld  the  following difference equation f o r  the  e r r o r  Z, 

%Zn+k + . . . + aOZn = h (bkzi+k + . . . + boZi) 

L e t  

A ,= a 
i j  

afi 
where a i j  = ay, the  terms f .  and y being the  i t h  and j t h  components 

1 j J 
of the  vectors F and Y, respect ively.  The assumption i s  now made t h a t  

a i s  constant and it follows immediately f r o m  the  mean value theorem t h a t  i j  

z: = A z  
J j 

Upon subs t i t u t ing  equation (17) i n t o  equation (16), t he  following d i f f e r -  
ence equation is  obtained 

% 

akzn+k + . . . + aOZn = h ~ ( b ~ ~ , + ~  + . . . + bOzn) 

For purposes of s impl i f ica t ion ,  the  following theorem i s  used. 

Theorem V I .  Every complex nxn matrix A i s  s imi la r  t o  a matrix 
of the form 

0 .  . o  
J =  

9 



where Jo i s  a diagonal matrix with diagonal X1, h2, . . . , Xq, and 

J .  = 
1 

1 

1 0 0 .  . o  

0 1 0 .  

0 0 0 0 .  

0 0 0 .  . o  

(i = 1 , ... , s )  

The X , j = 1, 2, ... , q + s a r e  the  c h a r a c t e r i s t i c  roots  of A and 
3 

need not a l l  be d i s t i n c t .  If the  X a r e  a l l  simple, then A i s  similar t o  

a diagonal matrix whose diagonal elements a r e  t h e  c h a r a c t e r i s t i c  roots  of A. 
(For a proof, reference could be made t o  r e f .  9 o r  almost any of t he  numerous 
t e x t s  on l i n e a r  algebra and matrix theory . )  
noted by J ( A ) .  

j 

The form of equation (19) i s  

By the  preceding theorem, there  e x i s t s  a non-singular matrix P, such 
-1 

t h a t  PAP" = J ( A ) .  Set  E = PZ, solve f o r  Z = P E ,  and s u b s t i t u t e  i n t o  
equation (18) t o  obtain 

+ ... + a E = h J ( A ) ( b k ~ n + k  + ... + bofn)  O n  a €  k n+k 

Transforming equation (17) i n  a similar manner, t he  following equation i s  
obtained : 

Only those e r r o r  components of equation (21)  which involve c h a r a c t e r i s t i c  roots 
of A with negative r e a l  p a r t s  a r e  considered, s ince  the  e r r o r  i n  the  other 
components a l ready  grow exponentially. This e r r o r  growth due t o  the  nature of 
the  e r r o r  equation (21) i s  not regarded as  i n s t a b i l i t y  of the  method. 

Let 

1 + . . . + b e  
= j ('k'j , n+k 0 j , n  0 j , n  

+ .  . . + a €  a €  k j,n+k 

j+l,n) ( 2 2 )  (bke j+l,n+k + .  . . + b o €  + 

10 



be an a r b i t r a r y  equation from the  system of equations (20)  where X has 

negative r e a l  Par ts .  Note t h a t  c i s  e i t h e r  0 or 1. If c i s  0, only the 
roots  of the  following cha rac t e r i s t i c  poly-homial 

j 

(y - hXjbk) xk + . . . + (ao - hXjbo) = 0 

need t o  be proved t o  l i e  within the  u n i t  c i r c l e .  

For t he  case c = 1, the  following theorem w i l l  be needed. 

Lema I. Let f ( E )  = a + alE + . . . + %$ be a polynomial with 0 
root  R # 0. There e x i s t s  an in teger  j k such t h a t  

k 
aiijRi # 0 

i =O 

Proof. Consider t he  K + 1 homogeneous equations i n  k + 1 unknowns 
1 

2 k x + R x  + R x 2  + . . . +  R \  = O  
0 1 

Rx + 2 R x 2  2 + .  . . + k R %  k = O  
1 

J . . . . . . . . . . . . . . . . .  
k 2  k k  R x - +  2 R x 2 +  . . . +  k R % = O  I 

The determinant of the  matrix of coef f ic ien ts  of equation (24) reduces t o  
the  deterininant 

R 2R2 . . . kRk 

R 2 R  . . . k R  2 2  2 k  

. . . . . . . . . .  
k 2  k k  R 2 R  . . . k R  

11 



Fact o r  ing  

property t h a t  

C 

i R i  

' A I  = lATl 

out of t h e  i t h  column of equation (25) and using t h e  

f o r  any square matrix A, equation (25) becomes 

1 1  . . .  1 

1 2  . . .  2k-l  

= ~ ( - 1 ) ~ - l l -  (i - j >  Z. o ( 2 6 )  . . . . . .  
l< i<  j Sk 

kk-l 1 k . . .  
Since t h e  determinant of t he  matrix of coe f f i c i en t s  i s  non-zero, 

equation (24) can have only the  t r i v i a l  so lu t ion  and therefore  the  coe f f i c i en t s  
of f ( E )  cannot be a so lu t ion .  

Theorem VII. Let E be an operator defined by 

and l e t  

f (E)yn  = h r R n  

be a non-homogeneous d i f fe rence  equation where 

f ( E )  = 

R # 0 i s  a root  of 

+ a E + . . . + %Ek. Then, t he re  e x i s t s  an in t ege r  j ,  and a. 1 
s o  t h a t  r + 1 numbers, Bj , Bj+l, . . .  J Bj+r, 

j + i  n R P "  
Yn = Bcj+in 

i =O 

i s  a p a r t i c u l a r  so lu t ion  t o  equation (27). 

Proof. By Lemma I, the re  e x i s t s  an in t ege r  j ,  s o  t h a t  

k 
aiijEii + 0 

i =O 

Assume t h a t  j i s  t h e  minimum such in teger  and t h a t  y has the  form of 

equation (28). 
n 

12 



Then 

j+ l  + . . . + Bj+, (n + i)j+’J aiR p . ( n  + i)’ + Bj+l(n + i)  i k 
f(E)ynp = Rn J - 

(29) i =O 

i 
Equating coef f ic ien ts  of n , i = 0, . . . , r ,  y ie lds  the  following 

r + 1 l i n e a r  equations i n  r + 1 unknowns: 

. j+ l  i (i aiijRi) Bj + ( i = O  a i l  ) Bj+l 
i =O i =O 

I . . . . .  

[(jy) a i i j R j  B ~ + ~  = A  J 
i = O  

i 
The coeff ic ients  of n f o r  i >  r a re  i d e n t i c a l l y  zero. For considering 

r t m  
the coef f ic ien t  of n , l s m s j ,  

*j 
+ ... + ( * j )  a.i’-mRiB 1 

k 

i =o i = O  j - m  i = O  

k 
Each B has a coef f ic ien t  with a f a c t o r  a.imRi where 6 j .  1 

i =O 
Therefore the coe f f i c i en t  of each B i s  zero. 

Now consider again the  non-homogeneous system of equations ( 3 0 ) .  It 
obviously has a so lu t ion ,  s ince  i t s  matrix of coef f ic ien ts  i s  t r i angu la r  with 
a l l  non-zero diagonal elements. Therefore, t he  r f 1 numbers 

Bj,Bj+l, - - * 3 Bj+r 
e x i s t  and the  Theorem is  proved. 

kt E be t h e  operator defined i n  Theorem VII. That is ,  



and 

f ( E )  = (y - hX - hX.b )&-l+ ... -I- (ao - hX b ) (31) 
J k-1 j 0  

where the  a and bi, i = 1, . . . , k ,  are def ined by equation (1). 
i 

Consider now equation (22) where c = 1. There e x i s t s  some pos i t i ve  
in teger  r such t h a t  

. . . =  x - - - 
j + r  - ‘j+r-l 3 

and 

= o  j+r , n 

Assume f u r t h e r  t h a t  r i s  the  l e a s t  such integer .  Therefore, 

s=l i=l 

where x i s  a roo t  of equation (23) of m u l t i p l i c i t y  j i = 1, .. . . , m. 
i i’ 

Subs t i t u t ing  equation (33) i n t o  the  equation f o r  E ~ + ~ - ~  t he  following 

non-homogeneous d i f fe rence  equation i s  obtained: 

Therefore, f o r  some in teger  p 

s ince  the  p a r t i c u l a r  so lu t ion  i s  of 
of the  homogeneous equation has t h e  
-induction, t he re  e x i s t s  an in teger  

i n  m p  

C C ‘in xs 
~ = l  i = O  

( 3 5 )  

t h i s  form by Theorem VI1 and t h e  so lu t ion  
same form as equation (33). 
q such t h a t  

Hence, by 

m 

j , n  = C e 

14 



Therefore, i f  !xsl<l, s = 1, . . . , m, 

equations decreases t o  0 as n increases and hence t h e  e r r o r  vec tor  Z a l s o  
converges t o  0. S t a b i l i t y  i s  now defined as follows: 

t h e  e r r o r  vector i n  the  transformed 

Def in i t ion  F. Let X j ,  j = 1, ... , m, denote t h e  c h a r a c t e r i s t i c  roots  of 

afi 
"he d i f fe rence  equation (1) i s  stable i f ,  f o r  a l l  X 

j 
A = (aij), ai j  = ay. 

J 
with negative r e a l  P a r t s ,  t he  roots  of 

l i e  wi th in  t h e  u n i t  c i r c l e .  

CONCLUSIONS 

It has been shown t h a t  t he  region of s t a b i l i t y  of a method, i f  one e x i s t s ,  
i s  dependent on t h e  c h a r a c t e r i s t i c  roots  of t he  matrix A. If t h i s  information 
i s  ava i lab le ,  it i s  poss ib le  t o  determine the  s tep-s ize  t o  insure t h a t  ca lcu la-  
t i o n s  a r e  within t h i s  s t a b i l i t y  region. I f ,  however, t he re  i s  i n t e r e s t  only i n  
the  existence of a s t a b i l i t y  region, t h i s  can be guaranteed by requi r ing  t h a t  
a l l  t he  roots  of t he  assoc ia ted  polynomial, with t h e  exception of t h e  p r i n c i p a l  
roo t ,  l i e  wi th in  the  u n i t  c i r c l e .  

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, March 1, 1365 
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